APLIKASI UAV LIDAR DALAM PENGEMBANGAN PANAS BUMI
Revanza Anwar, ST, M.Si
Tike Aprillia, ST
Energi Panas Bumi (Geothermal Energy)
Energi panas bumi adalah energi panas yang tersimpan dalam batuan di bawah permukaan bumi dan fluida yang terkandung di dalamnya. Energi panas bumi telah dimanfaatkan untuk pembangkit listrik di Itali sejak tahun 1913 dan di New Zealand sejak tahun 1958. Pemanfaatan energi panas bumi untuk sektor non‐listrik (direct use) telah berlangsung di Iceland sekitar 70 tahun. Meningkatnya kebutuhan akan energi serta meningkatnya harga minyak, khususnya pada tahun 1973 dan 1979, telah memacu negara-negara lain, termasuk Amerika Serikat, untuk mengurangi ketergantungan mereka pada minyak dengan cara memanfaatkan energi panas bumi. Saat ini energi panas bumi telah dimanfaatkan untuk pembangkit listrik di 24 Negara, termasuk Indonesia. Disamping itu fluida panas bumi juga dimanfaatkan untuk sektor non-listrik di 72 negara, antara lain untuk pemanasan ruangan, pemanasan air, pemanasan rumah kaca, pengeringan hasil produk pertanian, pemanasan tanah, pengeringan kayu, kertas, dll.
Di Indonesia usaha pencarian sumber energi panas bumi pertama kali dilakukan di daerah Kawah Kamojang pada tahun 1918. Pada tahun 1926 hingga tahun 1929 lima sumur eksplorasi dibor dimana sampai saat ini salah satu dari sumur tersebut, yaitu sumur KMJ‐3 masih memproduksikan uap panas kering atau dry steam. Pecahnya perang dunia dan perang kemerdekaan Indonesia mungkin merupakan salah satu alasan dihentikannya kegiatan eksplorasi di daerah tersebut. Kegiatan eksplorasi panas bumi di Indonesia baru dilakukan secara luas pada tahun 1972. Direktorat Vulkanologi dan Pertamina, dengan bantuan Pemerintah Perancis dan New Zealand melakukan survei pendahuluan di seluruh wilayah Indonesia. Dari hasil survei dilaporkan bahwa di Indonesia terdapat 217 prospek panas bumi, yaitu di sepanjang jalur vulkanik mulai dari bagian Barat Sumatera, terus ke Pulau Jawa, Bali, Nusa Tenggara dan kemudian membelok ke arah utara melalui Maluku dan Sulawesi. Survei yang dilakukan selanjutnya telah berhasil menemukan beberapa daerah prospek baru sehingga jumlahnya meningkat menjadi 256 prospek, yaitu 84 prospek di Sumatera, 76 prospek di Jawa, 51 prospek di Sulawesi, 21 prospek di Nusatenggara, 3 prospek di Irian, 15 prospek di Maluku dan 5 prospek di Kalimantan. Sistem panas bumi di Indonesia umumnya merupakan sistem hidrotermal yang mempunyai temperatur tinggi (>225 oC), hanya beberapa diantaranya yang mempunyai temperatur sedang (150‐225 oC).
Berdasarkan data Direktorat Panas Bumi EBTKE, potensi panas bumi yang dimiliki Indonesia sangatlah besar yaitu sekitar 23,9 GW, pemanfaatan panas bumi secara nasional baru 8% atau sekitar 2.130,7 MW. Pemanfaatan panas bumi pada saat ini setara dengan pemakaian BBM domestik sebesar 32.000* BOE per hari (= 92.000 BOE per hari minyak mentah) atau sekitar 81.200 BOE* per hari BBM domestik pada tahun 2025 jika target RUPTL sebesar 6.310 MW tercapai. Perhitungan ini dengan asumsi 1 MWh PLTP = 0,613 SBM (HESSI, KESDM 2018). Pemerintah menargetkan pengembangan panas bumi hingga satu dasawarsa kedepan (tahun 2020-2030) mencapai 8.007,7 MW. Ini artinya, dengan kapasitas terpasang saat ini yaitu 2.130,7 MW, masih diperlukan sekitar 177 proyek pengembangan panas bumi dengan kapasitas total sekitar 5.877 MW hingga tahun 2030. Pemerintah Indonesia juga mencanangkan bauran energi baru terbarukan mencapai 23% pada 2025 dan naik lagi 31 persen pada 2050. Sebaliknya, bauran energi dari minyak bumi pada 2050 diturunkan separuhnya dari saat ini 40%. Di sisi lain, pengembangan panas bumi masih memerlukan insentif tambahan untuk mencapai kelayakan proyeknya ditengah tingginya resiko eksplorasi dan keterbatasan akses infrastruktur ke lokasi pengembangan.
Risiko Eksplorasi, Eksploitasi, dan Pengembangan Lapangan Panas Bumi
Proyek panas bumi memiliki resiko yang tinggi dan memerlukan dana yang besar, oleh karena itu sebelum suatu lapangan panas bumi dikembangkan perlu dilakukan pengkajian yang hati-hati untuk menilai apakah sumber daya panas bumi yang terdapat di daerah tersebut menarik untuk diproduksikan. Penilaian kelayakan meliputi beberapa aspek, yang utama adalah: aspek teknis, pasar dan pemasaran, finansial, legal, serta sosial ekonomi.
Dari segi aspek teknis, hal‐hal yang harus dipertimbangkan adalah:
- Sumber daya mempunyai kandungan panas atau cadangan yang besar sehingga mampu memproduksikan uap untuk jangka waktu yang cukup lama, yaitu sekitar 25‐30 tahun.
- Reservoirnya tidak terlalu dalam, biasanya tidak lebih dari 3 km.
- Sumber daya panas bumi terdapat di daerah yang relatif tidak sulit dicapai.
- Sumber daya panas bumi memproduksikan fluida yang mempunyai pH hampir netral agar laju korosinya relatif rendah, sehingga fasilitas produksi tidak cepat terkorosi. Selain itu hendaknya kecenderungan fluida membentuk skala relatif rendah.
- Sumber daya panas bumi terletak di daerah dengan kemungkinan terjadinya erupsi hidrotermal relatif rendah. Diproduksikannya fluida panas bumi dapat meningkatkan kemungkinan terjadinya erupsi hidrotermal.
- Hasil kajian dampak lingkungan.
Dari aspek pasar dan pemasaran, hal‐hal yang harus dipertimbangkan adalah kebutuhan konsumen dan ketersediaan jaringan distribusi. Dari aspek finansial, perlu dilakukan pengkajian terhadap dana yang diperlukan, sumber dana, proyeksi arus kas, indikator ekonomi, seperti NPV, IRR, PI dll, serta perlu juga dipertimbangkan pengaruh perubahan ekonomi makro. Dari aspek sosial ekonomi, perlu dipertimbangkan pengaruh proyek terhadap penerimaan negara, kontribusi proyek terhadap penerimaan pajak, jasa‐jasa umum yang dapat dinikmati manfaatnya oleh masyarakat dan kontribusi proyek terhadap kesempatan kerja, alih teknologi dan pemberdayaan usaha kecil
Light Detection and Ranging (LiDAR)
LiDAR atau juga dikenal sebagai LADAR adalah akronim untuk light detection and ranging. LiDAR adalah teknologi yang menerapkan sistem penginderaan jauh sensor aktif untuk menentukan jarak dengan menembakkan sinar laser yang dipasang pada wahana pesawat. Jarak didapatkan dengan menghitung waktu antara ditembakkannya sinar laser dari sensor sampai diterima kembali oleh sensor.
LiDAR dapat dengan cepat mengukur permukaan bumi dengan laju pengambilan sampel data lebih besar dari 150 kilohertz (150.000 pulsa per detik)[1]. LiDAR menghasilkan produk berupa kumpulan titik awan (points cloud) yang tergeoreferensi, sehingga menghasilkan representasi tiga dimensi (3D) dari permukaan bumi dan objek-objek diatasnya. Sistem LiDAR pada umumnya banyak beroperasi dengan menggunakan gelombang near infrared (NIR). Namun beberapa sensor pun ada yang menggunakan spektrum gelombang hijau untuk menembus air dan mendeteksi keadaan di dasar air.
LiDAR dapat memperoleh data di bawah kanopi pohon. Hal ini lah yang menjadi keunggulan LiDAR dibandingkan dengan fotogrametri dan pemetaan menggunakan citra satelit. Meskipun tidak semua data di bawah kanopi pohon dapat diperoleh, tetapi data tersebut dapat dijadikan sampel titik permukaan tanah di daerah yang berpohon tersebut. Hal ini karena LiDAR menggunakan sinar laser, sehingga selama masih ada celah cahaya yang bisa menembus ke bawah kanopi pohon, maka data LiDAR dapat diperoleh.
Teknologi UAV LiDAR dalam Pengembangan Panas Bumi
Teknologi light detection and ranging (LiDAR) saat ini telah banyak dikembangkan. Output LiDAR berupa data tiga dimensi (3D) dengan akurasi yang cukup tinggi dan pengambilan data yang lebih cepat menjadikan teknologi ini mulai banyak diaplikasikan dalam berbagai bidang. Sehingga, teknologi ini dapat digunakan sebagai alternatif dari teknologi pemetaan secara konvensional (pemetaan terestris). Pada area pengukuran yang luas, LiDAR akan sangat efisien digunakan dibandingkan dengan metode pemetaan konvensional. Hal ini karena waktu pengambilan dan pemrosesan data dapat dilakukan lebih cepat. Selain itu output LiDAR sudah dalam bentuk digital, sehingga tidak perlu dilakukan proses digitalisasi. Pada perkembangan awalnya, LiDAR dibawa oleh wahana pesawat udara atau disebut dengan Airborne LiDAR. Namun karena biaya sewa pesawat cukup mahal, maka dikembangkanlah wahana pesawat tanpa awak yang dapat membawa sensor LiDAR. Pesawat tanpa awak ini dikenal juga sebagai Unmanned Aerial Vehicle (UAV).
Secara garis besar di bidang panas bumi, teknologi LiDAR bisa membantu mulai dari perencanaan pembuatan infrastruktur sampai dengan monitoring seluruh lokasi pada tahap eksploitasi. Selanjutnya akan dibahas secara detail aplikasi UAV LiDAR pada pengembangan panas bumi.
Aplikasi UAV LiDAR
Teknologi LiDAR yang menghasilkan output dengan akurasi data yang akurat, menjadikan teknologi ini mulai banyak digunakan dalam pengembangan Geotermal dimana lokasi panas bumi yang pada umumnya berada di kawasan hutan dengan topografi berbukit:
- Pemetaan Kawasan Hutan
Sinar laser yang dipancarkan oleh LiDAR dapat menembus celah-celah kecil pada kanopi pohon. Hal ini menjadikan LiDAR dapat merekam data di bawah kanopi pohon. Sehingga, dengan menggunakan LiDAR dapat dihasilkan Data Elevation Model (DEM) pada kawasan hutan. DEM dalam pemetaan kawasan hutan digunakan untuk menentukan rencana pembuatan infrastruktur lokasi pemboran panas bumi.
Gambar 1. Point cloud LiDAR bisa langsung memberikan gambaran profil dalam hutan.
(Hasil Olahan PT. Kreasi Handal Selaras, 2020)
- Perencanaan Infrastruktur
Data LiDAR memudahkan perencanaan dan pengembangan infrastruktur panas bumi (desain lokasi kluster pemboran, akses jalan, dan fasilitas pendukung lainnya). Selain itu juga digunakan dalam penyiapan data perizinan dan pembebasan lahan. Perencanaan dan pengembangan infrastruktur dapat lebih spesifik, karena UAV LiDAR bisa terbang rendah.
Gambar 2. Point cloud LiDAR mengenai semua obyek di atas permukaan tanah.
(Hasil Olahan PT. Kreasi Handal Selaras, 2020)
- Mitigasi dan Pemantauan Tanah Longsor
Pada pemantauan tanah longsor, pengambilan data LiDAR dilakukan secara berkala dalam selang waktu tertentu. Pergerakan tanah dapat dipantau dari perubahan data yang didapatkan. Pemantauan tanah longsor menggunakan LiDAR akan menghasilkan model tiga dimensi dari lereng yang diamati.
Gambar 3. Digital Elevation Model (DEM) tanah longsor.
(Hasil Olahan Data PT. Kreasi Handal Selaras)
Data LiDAR dalam Pemetaan Geohazard
Data berupa LiDAR, foto udara, peta geologi, dan peta tata guna lahan dikumpulkan untuk diolah menjadi zonasi rawan longsor yang kemudian digunakan sebagai Peta Rekomendasi Lahan. Peta ini digunakan sebagai acuan awal dalam penentuan lokasi yang baik berdasarkan kajian geoteknik. Kajian geoteknik ini merupakan upaya pengidentifikasian titik/daerah yang berpotensi menjadi geohazard secara local maupun regional. Persiapan berikutnya adalah membuat Peta Tata Guna Lahan dan Peta Kemiringan Lereng berdasarkan data LiDAR dan foto udara. Kemudian, Peta Tata Guna Lahan, Peta Kemiringan Lereng, dan Peta Geologi dibagi berdasarkan kelas tertentu dan pemberian bobot pada masing-masing kelas dilakukan.
Gambar 4. Peta Tata Guna Lahan, Peta Kemiringan Lereng, Peta Geologi
Ketiga peta tersebut digabungkan dengan metode Weighted Overlay. Pemberian bobot juga dilakukan untuk masing-masing peta berdasarkan pengaruh terhadap potensi pergerakan tanah. Kemudian, Peta Rekomendasi Lokasi terbentuk sesuai dengan zonasi potensi longsor yang terbagi menjadi 5 kelas, yaitu Sangat Aman, Aman, Layak, Rawan, dan Sangat Rawan. Berdasarkan Peta Rekomendasi Lahan dan Peta Daerah Tangkapan Air yang didapatkan dari hasil pengolahan data LiDAR, lokasi yang berpotensi mengalami pergerakan tanah dapat diinterpretasi arah pergerakannya. Arah pergerakan dari potensi pergerakan tanah tersebut juga telah didasarkan pada kondisi lapangan.
Gambar 5. Potensi Pergerakan Tanah
Referensi :
[1] Center, N. C. (2012). Lidar 101: An Introduction to Lidar Technology, Data, and Applications. Charleston: SC: NOAA Coastal Services Center.