Pos

PRESISI VS AKURASI PADA DATA LIDAR

Tike Aprillia Hartini

Keyword: presisi, akurasi, LiDAR (Light Detection and Ranging).

Dalam melakukan suatu pengukuran, untuk memastikan hasil ukuran yang didapatkan baik atau tidak digunakan istilah presisi dan akurasi. Presisi adalah tingkat konsistensi dari pengamatan yang ditentukan dari besarnya perbedaan dalam nilai data yang dihasilkan. Presisi sangat ditentukan oleh kestabilan kondisi pengamatan, kualitas alat, kemampuan dari pengamat, dan prosedur pengamatan. Sedangkan akurasi adalah tingkat kedekatan dari nilai pengamatan dengan nilai sebenarnya. Nilai sebenarnya dari suatu pengukuran tidak pernah dapat ditentukan, sehingga akurasi selalu tidak diketahui. [1] Namun, untuk mendekati nilai yang dianggap benar sering kali digunakan nilai rata-rata dari keseluruhan data yang diukur. Sehingga, hasil pengukuran akan memiliki tingkat akurasi yang tinggi apabila mendekati nilai rata-rata. Perbedaan presisi dan akurasi dapat dilihat pada ilustrasi di bawah ini:

Gambar 1. Akurasi dan Presisi.[1]

(1a) Akurat dan Presisi, (1b) Akurat, (1c) Presisi, (1d) Tidak Akurat dan Tidak  Presisi.

Presisi dan akurasi pun sering dikaitkan dengan kesalahan sistematis dan kesalahan acak. Kesalahan sistematis adalah kesalahan dengan kecenderungan menggeser semua pengukuran secara sistematis, sehingga nilai rata-rata secara konstan bergeser atau bervariasi dan dapat diprediksi perubahannya serta dapat dikoreksi. Sedangkan kesalahan acak adalah kesalahan dengan variasi nilai kesalahannya tidak terduga dan tidak dapat dikoreksi. Kesalahan acak ini dapat disebabkan karena faktor lingkungan di tempat pengukuran, seperti terjadi kebisingan, adanya kabut, dan getaran sehingga mempengaruhi hasil pengukuran. Apabila hasil pengukuran memiliki nilai akurasi yang rendah, maka kemungkinan besar terdapat kesalahan sistematis pada alat pengukuran. Sehingga diperlukan kalibrasi pada alat tersebut. Apabila hasil pengukuran memiliki nilai presisi yang rendah, kemungkinan besar terdapat kesalahan acak pada pengukuran yang dilakukan.

Dalam pengukuran LiDAR, presisi dan akurasi dapat dilihat dari sebaran data point cloud yang dihasilkan antar jalur terbang. Keakuratan data LiDAR dapat dilihat dari tingkat kedekatan point cloud dengan posisi aktual dari lingkungan yang dijelaskan. Sedangkan kepresisian dari data LiDAR dapat dilihat dari tingkat kekonsistenan point cloud antar jalur terbang pada titik yang sama. Sehingga, untuk mendapatkan nilai presisi ini harus dilakukan pengukuran lebih pada suatu objek. Oleh karena itu, pada saat melakukan akuisisi data lidar diperlukan pertampalan antar jalur terbang (sidelap dan overlap). Data LiDAR yang memiliki tingkat presisi yang tinggi akan menghasilkan point cloud yang lebih tipis karena memiliki jarak antar point cloud yang kecil dan memiliki sedikit noise.[2] Ilustrasi dari akurasi dan presisi dari data LiDAR dapat dilihat pada Gambar 2.

Gambar 2. Akurasi dan Presisi.[2]

Sehingga untuk mendapatkan hasil pengukuran yang mendekati nilai sebenarnya, kesalahan sistematik maupun acak harus dihindari agar tingkat akurasi dan presisi dari data yang dihasilkan memiliki kualitas yang baik. 

DAFTAR REFERENSI:

[1] Ghilani, Charles D dan Wolf, Paul R. 2006. Adjusment Computations Spatial Data Analysis. United States of America.

[2] Accuracy vs Precision. https://www.yellowscan-lidar.com/knowledge/wait-accuracy-vs-precision-isnt-rocket-science/?utm_source=hs_email&utm_medium=email&utm_content=81181499&_hsenc=p2ANqtz-9lnwORNL6_GfpxQre3qYVG3_Ykh7ZPDIctygB9BjeMocx-SeKScUmQ1DfHAia-2NGsymbjAHnuo2GoSb_CU-52hPyIMZV-oNjj-oPVj6w23CPnSpk&_hsmi=81181499, diakses pada tanggal 3 Februari 2020.

Perbedaan Data Hasil Dari Fotogrametri dan LiDAR (Light Detection and Ranging) Dalam Aplikasi Inspeksi Jaringan Listrik Tegangan Tinggi (SUTET)

Oleh : Tike Aprilia, ST

Fotogrammetri dan LiDAR (Light detection and ranging) menggunakan wahana UAV (Unmanned Aerial Vehicle) memiliki perbedaan yang signifikan dalam akusisi dan hasilnya. Berikut adalah beberapa perbedaan antara Foto Udara dan LiDAR menggunakan wahana UAV:

1. Foto udara menggunakan alat dasar kamera foto menghasilkan data raster (data grid) sedangkan Lidar menghasilkan data Point yang biasa disebut point cloud. Data foto udara dapat membentuk data point cloud, namun dengan kualitas dan densitas point yang lebih rendah dibandingkan point cloud yang dihasilkan oleh LiDAR

Gambar 1. Point Cloud Yang Dihasilkan Oleh Foto Udara

Pada Gambar 1. terlihat SUTET dan kabel listrik tidak terbentuk dengan sempurna. Selain itu objek pohon memiliki bentuk seperti bukit.

Gambar 2. Point Cloud yang Dihasilkan Oleh LiDAR

Pada Gambar 2. point cloud yang dihasilkan LiDAR memiliki densitas titik yang sangat rapat. Sehingga objek-objek terlihat seperti bentuk aslinya dalam tiga dimensi. Point cloud yang dihasilkan dapat ditampilkan berdasarkan ketinggian dan RGB dari masing-masing objek.

Gambar 3. SUTET dan Kabel yang Dihasilkan dari Akuisisi LiDAR

2. Foto udara menggunakan alat dasar kamera foto, pada dasarnya menghasilkan data dua dimensi yang memiliki akurasi lebih baik pada X dan Y (posisi). Sedangkan LiDAR menggunakan sensor yang dapat menembakkan gelombang terhadap objek dan gelombang yang dipantulkan diterima kembali oleh sensor tersebut. LiDAR akan menghasilkan data tiga dimensi yang memiliki karakteristik akurasi lebih baik pada Z (tinggi) dan dapat menembus permukaan tanah di bawah pohon selama terdapat celah cahaya yang dapat menembus pohon.

Gambar 4. Foto Udara yang Dihasilkan dari Akuisisi Fotogrametri Berupa Data Dua Dimensi
Gambar 5. Point Cloud yang Dihasilkan dari Akuisis LiDAR Berupa Data Tiga Dimensi

3. Analisisi Vegetasi dibawah jaringan listrik tegangan tinggi (SUTET) membutuhkan data Digital Terrain Model (DTM) yang akan diterjemahkan menjadi data kontur, data ketingian pohon dari data Digital Surface model (DSM), serta data model tiang dan kabel. Untuk itu, analisis vegetasi idealnya menggunakan data LiDAR. Namun untuk melakukan updating data dapat dilakukan dengan menggunakan data Foto Udara,  dengan mendapatkan data DSM vegetasi dan mengesampingkan model tiang dan kabel SUTET.

Gambar 6. Dengan Point Cloud LiDAR Dapat Diketahui Perbedaan Tinggi Kabel dan Objek Di Bawahnya
Gambar 7. Data LiDAR Dapat Diolah Untuk Mengetahui Danger Area Disekitar SUTET.
Gambar 8. SUTET terbentuk dalam point cloud foto udara, namun tidak sejelas pada data LiDAR. Sedangkan kabel listrik tidak terbentuk pada point cloud foto udara.
Gambar 9. Analisis menggunakan foto udara dapat menghitung jumlah pohon yang terdapat di bawah SUTET dan dapat dibuat analisis ketinggiannya, namun tidak bisa mendapatkan ketinggian dari kabelnya.