Pos

Teknologi GNSS Dalam Manajemen Bencana

Oleh: Arszandi Pratama, S.T, M.Sc, Rabby Awalludin S.T, Tike Aprillia S.T, dan Dandy Muhamad Fadilah, S.T

Secara umum wilayah Indonesia merupakan wilayah yang rawan terhadap bencana alam mengingat posisi geografis Indonesia yang berada diantara tiga lempeng besar dunia yang terus aktif bergerak. Untuk itu, pentingnya manajemen bencana yang baik dan tanggap untuk dapat meminimalisir kerusakan terjadinya bencana tersebut, sehingga diharapkan Indonesia dapat siap menghadapi bencana. Penggunaan teknologi GNSS bukan hal baru di Indonesia. Pemerintah Indonesia telah menggunakan GNSS untuk membantu dalam pengumpulan data-data (mitigasi) atau pasca bencana. Dalam artikel ini anda akan mengetahui apa itu GNSS, kelebihan dan kekurangan, serta beberapa penerapan GNSS dalam manajemen bencana.

Sumber: PT. KHS

Mengenal GNSS

Global Navigation Satellite System (GNSS) merupakan istilah singkatan dari suatu sistem satelit navigasi yang menyediakan posisi geospasial dalam lingkup global. GNSS beroperasi secara penuh sejak Desember 2009. Diawali dengan sistem Global Positioning System (GPS) yang merupakan suatu konstelasi yang terdiri tidak kurang dari 24 satelit yang menyediakan informasi koordinat posisi yang akurat secara global. GPS mempergunakan satelit dan komputer untuk melakukan penghitungan posisi dimanapun di muka bumi ini. Sistem ini dimiliki, dioperasikan dan dikontrol oleh United States Department of Defenses (DoD). GNSS dapat dipergunakan secara global dimanapun dan oleh siapapun dimuka bumi ini secara gratis. Istilah GNSS lainnya adalah suatu sistem satelit yang terdiri dari konstelasi satelit yang menyediakan informasi waktu dan lokasi, memancarkan macam-macam sinyal dalam berbagai frekuensi secara terus menerus, yang tersedia di semua lokasi di atas permukaan bumi. GNSS sekarang ini terdiri dari 6 Satelit:

  1. NAVSTAR GPS (NAVigation Satelite Timing and Ranging Global Positioning System) (USA).
  2. GLONASS (Rusia) = Global’naya Navigatsionnaya Sputnikovaya Sistema.
  3. Galileo (Eropa)
  4. Compass (China) / Beidou
  5. Quasi-Zenith Sistem Satelit (QZSS)
  6. India Regional Navigation Satellite System (IRNSS)

Sumber: “Handbook of Global Navigation Satellite Systems” by Peter J.G. Teunissen, and Oliver Montenbruck (Eds.) © Springer International Publishing AG 2017

Dengan segala manfaat yang ada, teknologi GNSS menawarkan hasil koordinat yang akurat dan presisi untuk menunjang berbagai kegiatan survey dan pemetaan. 

Kemampuan GNSS

  1. Posisi yang diberikan adalah posisi 3-D, yaitu (X,Y,Z) atau (L,B,h).
  2. Tinggi yang diberikan oleh GPS adalah tinggi ellipsoid.
  3. Datum dari posisi yang diperoleh adalah WGS (World Geodetic System) 1984 yang menggunakan ellipsoid referensi GRS 1980.
  4. Penentuan posisi dapat dilakukan dengan beberapa metode: absolute, positioning, differential positioning, static surveying, rapid static, pseudo kinematic dan kinematic positioning.
  5. Titik yang akan ditentukan posisinya dapat diam maupun bergerak.
  6. Posisi titik dapat ditentukan terhadap pusat massa bumi ataupun terhadap titik lainnya yang telah diketahui koordinatnya.
  7. Spektrum ketelitian posisi yang diberikan berkisar dari sangat teliti (orde : mm) sampai kurang teliti (orde : puluhan meter).

Pada dasarnya informasi yang diperoleh dari penentuan posisi dengan GNSS adalah posisi, kecepatan dan waktu. Disamping produk dasar tersebut, parameter turunan lainnya juga dapat ditentukan dengan teknologi GNSS ini. Parameter Turunan tersebut antara lain: Posisi, Kecepatan, Waktu, Percepatan, Frekuensi, Azimut Geodetik, Attitude Parameter, TEC (Total Electron Content), WVC (Wall Vapour Content), Parameter Orientasi Bumi, Tinggi Orthometric, Undulasi Geoid dan Defleksi Vertikal.

Kelebihan dan Kekurangan Teknologi GNSS

Ada beberapa hal yang membuat metode pengukuran mengguanakan GPS Geodetic / GNSS memiliki kelebihan dibandingkan dengan metode konvensional, diantaranya:

  1. GNSS / GPS Geodetic dapat digunakan setiap saat tanpa tergantung waktu dan cuaca
  2. Satelit-satelit GNSS mempunyai ketinggian orbit yang cukup tinggi yaitu sekitar 20.000 km di atas permukaan bumi serta dengan jumlah yang relatif cukup banyak. Hal ini menjadikan GNSS dapat meliput wilayah yang cukup luas sehingga dapat digunakan oleh banyak orang sekaligus.
  3. Penggunaan GPS Geodetic dalam penentuan posisi relatif tidak terlalu terpengaruh dengan kondisi topografis daerah survei dibandingkan dengan penggunaan metode terestris.
  4. Posisi yang ditentukan oleh GNSS / GPS Geodetic mengacu ke suatu datum global yang relatif teliti dan mudah direalisasikan, yaitu datum WGS 84.
  5. GNSS dapat memberikan ketelitian posisi yang spektrumnya cukup luas. Dari yang sangat teliti (orde millimeter) sampai orde meter.
  6. Pemakaian sistem GNSS tidak dikenakan biaya.
  7. Lebih efisien dalam waktu, biaya operasional, dan tenaga.
  8. Celah untuk memanipulasi data pada pengukuran GNSS lebih sulit dibandingkan menggunakan metode terestris
  9. Relatif mudah dipelajari sekalipun oleh orang awam yang belum pernah menggunakan.

Akan tetapi terdapat keterbatasan dari teknologi GNSS tersebut antara lain:

  1. Tidak boleh ada penghalang antara receiver dan satelit.
  2. Komponen tinggi yang dihasilkan adalah tinggi dengan acuan ellipsoid.
  3. Perlu proses yang relatif tidak mudah untuk menganalisa data.

GNSS Untuk Mitigasi Bencana

Indonesia adalah negara kepulauan yang terletak pada pertemuan tiga lempeng besar yaitu Eurasia, Indo-Australia dan Pasifik. Sebagai konsekuensinya negara kita sangat rawan bencana geologi berupa erupsi gunung api, gempa bumi, tsunami dan gerakan tanah. Monitoring dan pemetaan risiko merupakan faktor kunci dalam upaya pengelolaan risiko bencana yang terstruktur dan terintegrasi. perlu dilakukan upaya-upaya mitigasi risiko bencananya salah satunya dengan penggunaan teknologi GNSS. Berikut beberapa mitigasi bencana yang menggunakan GNSS:

  1. Mitigasi Bencana Gempa Bumi

Salah satu cara untuk mengetahui status seismik yakni melalui pengamatan deformasi tektonik yang berhubungan dengan kejadian siklus sebuah gempa bumi (deformasi interseismik, co-seismik dan post-seismik). Pengamatan deformasi ini dapat dilakukan dengan pendekatan Geodesi yaitu menggunakan teknologi Interferometry Synthetic Aperture Radar (InSAR) dan teknologi GPS. Teknologi InSAR adalah teknologi Geodesi yang dikembangkan untuk pengamatan deformasi dengan akurasi centimeter (Abidin, 2001). Namun, teknologi GPS memiliki orde ketelitian yang lebih tinggi dibandingkan dengan InSAR. Teknologi GPS dapat memberikan nilai vector deformasi kerak bumi yang berhubungan dengan gempa bumi secara tiga dimensi yakni deformasi dalam arah horizontal dan vertikal dengan tingkat presisi sampai orde milimeter (Abidin dkk., 2009). Dalam kegiatan pemantauan diperlukan beberapa titik pantau yang tersebar pada lokasi patahan untuk melihat gerakan mikro dan sekitar patahan untuk melihat gerakan makro (Widjajanti, dkk., 2013)

  1. Mitigasi Bencana Land Subsidence (Penurunan Tanah)

Land subsidence (penurunan tanah) adalah suatu fenomena alam yang banyak terjadi di kota-kota besar yang berdiri di atas lapisan sedimen, seperti: Jakarta, Semarang, Bangkok, Shanghai, dan Tokyo. Dari studi penurunan tanah yang dilakukan selama ini diidentifikasi ada beberapa faktor penyebab terjadinya penurunan tanah, yaitu: pengambilan air tanah yang berlebihan, penurunan karena beban bangunan, penurunan karena adanya konsolidasi alamiah dari lapisan-lapisan tanah, serta penurunan karena gaya-gaya tektonik.

Dalam kaitannya dengan monitoring dan pemetaan risiko bencana land subsidence atau penurunan muka tanah dilakukan guna mengidentifikasi lebih detail upaya pengendalian yang tidak bersifat sementara semata. Pada prinsipnya penurunan tanah dari suatu wilayah dapat dipantau dengan menggunakan beberapa metode, baik itu metode-metode hidrogeologis dengan pengamatan level muka air tanah serta pengamatan dengan ekstensometer dan piezometer yang diinversikan kedalam besaran penurunan muka tanah dan metode geoteknik, maupun metode-metode geodetik seperti survei sipat datar (leveling), survei gaya berat mikro, survei GPS (Global Positioning System), dan InSAR (Interferometric Synthetic Aperture Radar).

Prinsip studi penurunan tanah dengan metode survei GNSS yaitu dengan menempatkan beberapa titik pantau di beberapa lokasi yang dipilih secara periodik untuk ditentukan koordinatnya secara teliti dengan menggunakan metode survei GNSS. Dengan mempelajari pola dan kecepatan perubahan koordinat dari titik-titik tersebut dari survei yang satu ke survei berikutnya, maka karakteristik penurunan tanah akan dapat dihitung dan dipelajari lebih lanjut.  GNSS akan memberikan nilai vektor pergerakan tanah dalam tiga dimensi (dua komponen horisontal dan satu komponen vertikal). Jadi, disamping memberikan informasi tentang besarnya penurunan muka tanah. GNSS juga sekaligus memberikan informasi tentang pergerakan tanah dalam arah horisontal.

GNSS juga memberikan nilai vektor pergerakan dan penurunan tanah dalam suatu sistem koordinat referensi yang tunggal. Maka dari itu dapat digunakan untuk memantau pergerakan suatu wilayah secara efektif dan efisien. GNSS dapat memberikan nilai vektor pergerakan dengan tingkat presisi sampai beberapa mm, dengan konsistensi yang tinggi baik secara spasial maupun temporal. Dengan tingkat presisi yang tinggi dan konsisten ini maka diharapkan besarnya pergerakan dan penurunan tanah yang kecil sekalipun akan dapat terdeteksi dengan baik GNSS dapat diman’aatkan secara kontinyu tanpa tergantung waktu dan dalam segala kondisi cuaca. Dengan karakteristik semacam ini maka pelaksanaan survei GNSS untuk pemantauan pergerakan dan penurunan muka tanah dapat dilaksanakan secara efektif dan fleksibel. Di Indonesia, untuk dapat memonitoring penurunan tanah dilakukan dengan menggunakan GNSS yang dipadukan dengan Extensometer. Metode ini mampu mengukur perubahan posisi permukaan secara 3 dimensi sekaligus menunjukkan laju, luas dan pada kedalaman berapa penurunan muka tanah terjadi. 

REFERENSI

  1. Widjajanti, Nurrohmat. dkk. 2018. GNSS Monitoring Network Optimization Case Study: Opak Fault Deformation, Yogyakarta. Journal of Geospatial Information Science and Engineering. ISSN: 2623-1182. Universitas Gajah Mada.
  2. Survey GPS/GNSS. https://totalgeosurvey.com/layanan/survey-gps-gnss/. Diakses pada 30 November 2022.
  3. Badan Geologi, Kementerian ESDM. 2021. CoE Geologi Indoensia.
  4. Wahyono, Eko Budi dan Muh. Arif Suhattanto. 2019. Survey Satelit Pertanahan. Modul Sekolah Tinggi Pertanahan Nasional Yogyakarta.
  5. Akbar, Yanuar. Survey GPS. https://www.academia.edu/11884316/survei_gps. Diakses pada 30 November 2022.
  6. Gumilang, Ragil Satriyo. 2020. Kesiapan Monitoring dan Pemetaan Risiko Land Subsidence di Indonesia.  https://kumparan.com/ragil-satriyo/kesiapan-monitoring-dan-pemetaan-risiko-land-subsidence-di-indonesia-1uVczPcTTdJ/full. Diakses pada 30 November 2022.
  7. Lubis, Ashar Muda. 2021. Pemanfaatan Survey GPS Geodetik untuk Pengamatan Deformasi Inter-seismik Setelah Satu Dekade Kejadian Gempa Bumi Bengkulu 2007 (Mw 8,4) di Daerah Bengkulu Bagian Utara. Jurnal Geosains dan Teknologi. Vol. 4 No. 1. 
  8. Abidin, Hasanuddin Z. 2021. Pemanfaatan Teknologi GNSS Untuk Survei dan Pemetaan Pertanahan. Virtual VGD “Pemanfaatan GNSS Untuk Pertanahan dan Tata Ruang di Masa Kini dan Masa Depan” Kementerian ATR/BPN. https://www.researchgate.net/profile/Hasanuddin-Z-Abidin/publication/353547234_Pemanfaatan_Teknologi_GNSS_Untuk_Survei_dan_Pemetaan_Pertanahan/links/61024d871ca20f6f86e62b08/Pemanfaatan-Teknologi-GNSS-Untuk-Survei-dan-Pemetaan-Pertanahan.pdf. Diakses pada 30 November 2022.